lower explosive limit in a building which has a source of ignition. For the purpose of paragraph (c)(2)(ii) of this section, an electrical facility which conforms to Class 1, Group D, of the National Electrical Code is not a source of ignition. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–27, 41 FR 34605, Aug. 16, 1976; Amdt. 192–85, 63 FR 37503, July 13, 1998] ## § 192.169 Compressor stations: Pressure limiting devices. - (a) Each compressor station must have pressure relief or other suitable protective devices of sufficient capacity and sensitivity to ensure that the maximum allowable operating pressure of the station piping and equipment is not exceeded by more than 10 percent. - (b) Each vent line that exhausts gas from the pressure relief valves of a compressor station must extend to a location where the gas may be discharged without hazard. # § 192.171 Compressor stations: Additional safety equipment. - (a) Each compressor station must have adequate fire protection facilities. If fire pumps are a part of these facilities, their operation may not be affected by the emergency shutdown system. - (b) Each compressor station prime mover, other than an electrical induction or synchronous motor, must have an automatic device to shut down the unit before the speed of either the prime mover or the driven unit exceeds a maximum safe speed. - (c) Each compressor unit in a compressor station must have a shutdown or alarm device that operates in the event of inadequate cooling or lubrication of the unit. - (d) Each compressor station gas engine that operates with pressure gas injection must be equipped so that stoppage of the engine automatically shuts off the fuel and vents the engine distribution manifold. - (e) Each muffler for a gas engine in a compressor station must have vent slots or holes in the baffles of each compartment to prevent gas from being trapped in the muffler. ### § 192.173 Compressor stations: Ventilation. Each compressor station building must be ventilated to ensure that employees are not endangered by the accumulation of gas in rooms, sumps, attics, pits, or other enclosed places. ### § 192.175 Pipe-type and bottle-type holders. - (a) Each pipe-type and bottle-type holder must be designed so as to prevent the accumulation of liquids in the holder, in connecting pipe, or in auxiliary equipment, that might cause corrosion or interfere with the safe operation of the holder. - (b) Each pipe-type or bottle-type holder must have minimum clearance from other holders in accordance with the following formula: $C = (D \times P \times F)/48.33) (C = (3D \times P \times F/1,000))$ in which: C = Minimum clearance between pipe containers or bottles in inches (millimeters). D=Outside diameter of pipe containers or bottles in inches (millimeters). P=Maximum allowable operating pressure, p.s.i. (kPa) gage. F=Design factor as set forth in §192.111 of this part. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37503, July 13, 1998] # § 192.177 Additional provisions for bottle-type holders. - (a) Each bottle-type holder must be— - (1) Located on a site entirely surrounded by fencing that prevents access by unauthorized persons and with minimum clearance from the fence as follows: | Maximum allowable operating pressure | Minimum clear-
ance feet (me-
ters) | |--------------------------------------|---| | Less than 1,000 p.s.i. (7 MPa) gage | 25 (7.6)
100 (31) | - (2) Designed using the design factors set forth in §192.111; and - (3) Buried with a minimum cover in accordance with § 192.327. - (b) Each bottle-type holder manufactured from steel that is not weldable under field conditions must comply with the following: - (1) A bottle-type holder made from alloy steel must meet the chemical and #### § 192.179 tensile requirements for the various grades of steel in ASTM A 372/A 372M. - (2) The actual yield-tensile ratio of the steel may not exceed 0.85. - (3) Welding may not be performed on the holder after it has been heat treated or stress relieved, except that copper wires may be attached to the small diameter portion of the bottle end closure for cathodic protection if a localized thermit welding process is used. - (4) The holder must be given a mill hydrostatic test at a pressure that produces a hoop stress at least equal to 85 percent of the SMYS. - (5) The holder, connection pipe, and components must be leak tested after installation as required by subpart J of this part. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–58, 53 FR 1635, Jan. 21, 1988; Amdt 192–62, 54 FR 5628, Feb. 6, 1989; 58 FR 14521, Mar. 18, 1993; Amdt. 192–85, 63 FR 37503, July 13, 1998] #### § 192.179 Transmission line valves. - (a) Each transmission line, other than offshore segments, must have sectionalizing block valves spaced as follows, unless in a particular case the Administrator finds that alternative spacing would provide an equivalent level of safety: - (1) Each point on the pipeline in a Class 4 location must be within $2\frac{1}{2}$ miles (4 kilometers)of a valve. - (2) Each point on the pipeline in a Class 3 location must be within 4 miles (6.4 kilometers) of a valve. - (3) Each point on the pipeline in a Class 2 location must be within $7\frac{1}{2}$ miles (12 kilometers) of a valve. - (4) Each point on the pipeline in a Class 1 location must be within 10 miles (16 kilometers) of a valve. - (b) Each sectionalizing block valve on a transmission line, other than offshore segments, must comply with the following: - (1) The valve and the operating device to open or close the valve must be readily accessible and protected from tampering and damage. - (2) The valve must be supported to prevent settling of the valve or movement of the pipe to which it is attached. - (c) Each section of a transmission line, other than offshore segments, be- tween main line valves must have a blowdown valve with enough capacity to allow the transmission line to be blown down as rapidly as practicable. Each blowdown discharge must be located so the gas can be blown to the atmosphere without hazard and, if the transmission line is adjacent to an overhead electric line, so that the gas is directed away from the electrical conductors. (d) Offshore segments of transmission lines must be equipped with valves or other components to shut off the flow of gas to an offshore platform in an emergency. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–27, 41 FR 34606, Aug. 16, 1976; Amdt. 192–78, 61 FR 28784, June 6, 1996; Amdt. 192–85, 63 FR 37503, July 13, 1998] #### § 192.181 Distribution line valves. - (a) Each high-pressure distribution system must have valves spaced so as to reduce the time to shut down a section of main in an emergency. The valve spacing is determined by the operating pressure, the size of the mains, and the local physical conditions. - (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping at a distance from the regulator station sufficient to permit the operation of the valve during an emergency that might preclude access to the station. - (c) Each valve on a main installed for operating or emergency purposes must comply with the following: - (1) The valve must be placed in a readily accessible location so as to facilitate its operation in an emergency. - (2) The operating stem or mechanism must be readily accessible. - (3) If the valve is installed in a buried box or enclosure, the box or enclosure must be installed so as to avoid transmitting external loads to the main. ## § 192.183 Vaults: Structural design requirements. (a) Each underground vault or pit for valves, pressure relieving, pressure limiting, or pressure regulating stations, must be able to meet the loads which may be imposed upon it, and to protect installed equipment.